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Abstract

In many applications there is interest in estimating the relation between a predictor and an 

outcome when the relation is known to be monotone or otherwise constrained due to the 

physical processes involved. We consider one such application–inferring time-resolved aerosol 

concentration from a low-cost differential pressure sensor. The objective is to estimate a monotone 

function and make inference on the scaled first derivative of the function. We proposed Bayesian 

nonparametric monotone regression which uses a Bernstein polynomial basis to construct the 

regression function and puts a Dirichlet process prior on the regression coefficients. The base 

measure of the Dirichlet process is a finite mixture of a mass point at zero and a truncated 

normal. This construction imposes monotonicity while clustering the basis functions. Clustering 

the basis functions reduces the parameter space and allows the estimated regression function to be 

linear. With the proposed approach we can make closed-formed inference on the derivative of the 

estimated function including full quantification of uncertainty. In a simulation study the proposed 

method performs similar to other monotone regression approaches when the true function is 

wavy but performs better when the true function is linear. We apply the method to estimate time-

resolved aerosol concentration with a newly-developed portable aerosol monitor. The R package 

bnmr is made available to implement the method.
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1 Introduction

In environmental, biomedical, and engineering applications a common objective is to 

estimate the relation between a predictor and an outcome when there is prior knowledge 

that the relation is monotone or otherwise shape-constrained. In this paper we consider 

one such application that relates to measuring airborne particles at fine-temporal resolution 

using a recently-developed portable monitor. At the center of this problem is estimation of a 
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function that is known to be monotone due to the physical processes involved in the monitor 

and making inference on the scaled first derivative of the estimated monotone function 

which is equal to estimated aerosol concentration.

Measuring air pollution with high temporal and spatial resolution is critical to both 

conducting air pollution research and protecting the public’s health. In an ideal world, 

we would be able to use a large number of monitors to measure personal air pollution 

exposure in cohort studies of health effects or to deploy in networks to warn of potential 

risks such as those from exposure to wildfire smoke. However, the large size and high cost 

of air quality monitors has historically prohibited widespread use. Hence, there is a need to 

develop smaller, more affordable monitors and the accompanying data science tools to make 

meaningful inference on the readouts of these monitors.

In this paper we consider inference for data generated by the recently-developed Mobile 

Aerosol Reference Sampler (MARS). MARS was designed to be an affordable, portable 

monitor for measuring fine particulate matter (PM2.5) concentrations in environmental 

and occupational health studies (Tryner et al., 2019). The MARS device is built on the 

Ultrasonic Personal Aerosol Sampler (UPAS) platform which has also been previously 

described in the literature (Volckens et al., 2017). MARS uses a piezoelectric microblower 

to pull air through a PM2.5 cyclone inlet and a 25mm filter. A high-resolution pressure 

sensor measures the time-resolved pressure drop across the sampling filter. As particles 

accumulate on the filter the pressure drop across the filter increases. This pressure drop 

should be positive and increase monotonically in time during measurement. Deviations from 

monotonicity only occur (1) in the first few minutes of use when a new filter is stretching 

out or (2) if there is a change in air density or particle source. In the experimental data 

used in this paper, particle source remained constant and only minor changes in air density 

occurred. Time-resolved PM2.5 concentration can be inferred from the time-resolved rate of 

change in pressure drop after the latter is normalized to the total PM2.5 mass collected on the 

filter. Specifically, when the derivative is scaled so that the area under the derivative function 

is equal to total PM2.5 mass collected on the filter divided by volumetric flow rate, then the 

scaled first derivative is a measure of PM2.5 concentration as a function of time (Novick et 

al., 1992; Dobroski et al., 1997). Hence, the objective is to estimate the pressure drop as a 

function of time and then make inference on the scaled first derivative of pressure drop.

Several approaches have been proposed to estimate monotone functions. Early works 

include estimation of shape-constrained piecewise linear functions (Hildreth, 1954; Brunk, 

1955). Mammen (1991) proposed monotone kernel smoother methods and Mammen et al. 

(2001) proposed monotone projections of unconstrained smooth estimators. A large number 

of spline based approaches have been proposed including cubic smoothing splines (Wang 

and Li, 2008), constrained regression splines (Ramsay, 1988; Meyer, 2008; Meyer et al., 

2011; Powell et al., 2012), penalized splines (Meyer, 2012), and piecewise linear splines 

(Neelon and Dunson, 2004). Several recent papers have proposed monotone Bernstein 

polynomial (BP) regression (Chang et al., 2005, 2007; Curtis and Ghosh, 2011; Wang and 

Ghosh, 2011; Wilson et al., 2014; Ding and Zhang, 2016).
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In this paper we take a BP approach to constrained regression. Monotonicity can be imposed 

with BPs by imposing a linear order constraint on the regression coefficients. An alternative 

but equivalent approach is to linearly transform the regression coefficients and then impose 

a positivity constraint on all of the transformed regression coefficients with the exception 

of the intercept, which is unconstrained (Wang and Ghosh, 2011). Curtis and Ghosh (2011) 

proposed a variable selection approach to monotone regression with BPs that puts a variable 

selection prior on the transformed regression coefficients akin to a mixture of a mass point 

at 0 and a normal distribution truncated below at 0. The approach is appealing because it 

imposes monotonicity, allows for data-driven tuning of the model by selecting excess basis 

functions out of the model and allows for no association when all coefficients are selected 

out of the model.

The approach we present here, which we refer to as Bayesian nonparametric monotone 

regression (BNMR), is similar to that of Curtis and Ghosh (2011) in that we use a 

BP expansion and a variable selection prior that imposes monotonicity. In contrast, our 

approach both selects some regression coefficients to be zero and clusters other regression 

coefficients. By clustering regression coefficients we create a reduced set of combination 

basis functions that are each the sum of multiple BPs and assigned a single regression 

coefficient. This has two distinct advantages over only variable selection. First, when 

all regression coefficients are clustered together into a single combination basis function 

the approach is equivalent to performing linear regression with the slope constrained to 

be non-negative. This improves performance when the true regression function is in fact 

linear. Second, when the true regression function is nonlinear our approach requires a 

reduced number non-zero regression coefficients each corresponding to the combination of a 

mutually exclusive set of basis functions. In a simulation study we show that our approach 

is able to match the flexibility of alternative approaches but uses a smaller number of 

parameters. As a result our Markov chain Monte Carlo (MCMC) approach samples from 

the full conditional of a truncated multivariate normal distribution of smaller dimension 

which can reduce autocorrelation in the resulting chain. Hence, the proposed method allows 

for flexible monotone regression while allowing the model to be null when there is no 

association between predictor and outcome and allowing the function to be linear when there 

is no evidence of nonlinearity. This results in comparable performance to other approaches 

for smooth nonlinear functions but improved inference when the true relation is linear.

We apply the proposed approach to evaluate 12 samples collected using MARS in a 

controlled laboratory chamber. We compare estimated time-resolved PM2.5 inferred with 

the proposed method based on 30-second measurements of pressure drop across the MARS 

filter to minute-resolution measurements of PM2.5 in the chamber reported by a tapered 

element oscillating microbalance (TEOM) (1405 TEOM, ThermoFisher Scientific, Waltham, 

MA, USA), which is a regulatory-grade PM2.5 monitor.

2 Methods

2.1 Model formulation

Our primary interest is estimating the regression function
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yi = f xi + ϵi (1)

where f is an unknown monotone function. Without loss of generality, and consistent with 

our application, we assume that f is monotone increasing. We also assume that x is scaled to 

the unit interval.

We parameterized f using a BP expansion. The kth BP basis function of order M is

ψk(x, M) = M
k  xk(1 − x)M − k . (2)

The regression function expressed as a weighted combination of BPs is

f(x) = ∑
k = 0

M
ψk(x, M)βk = Ψ(x, M)β, (3)

where β = (β0, …, βM)T are regression coefficients and Ψ(x, M) = [ψ0(x, M), …, ψM(x, 

M)]. The first regression coefficient β0 parameterizes the intercept. Figure 1a shows the BP 

basis used in the data analysis.

The regression function in (3) is monotone increasing if βk−1 ≤ βk for all k = 1, …, 

M. Following Curtis and Ghosh (2011), it is convenient to reparameterize the regression 

coefficients. Let Aβ = θ where θ = (θ0, …, θM)T and the (M + 1) × (M + 1)-matrix A is 

such that θ0 = β0 and θk = βk − βk−1 for k = 1, …, M:

A =

1 0 0 … 0 0
−1 1 0 … 0 0
0 −1 1 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … −1 1

. (4)

The regression function is then

f(x) = Ψ(x, M)A−1θ . (5)

Figure 1b shows the transformed basis Ψ(x, M)A−1 used in the data analysis.

Using this reparameterization f is monotone increasing when θk ≥ 0 for all k > 0. Further, f 
is linear with the form f(x) = θ0 + wx then θk = w ∀k > 0 including no association when w = 

0.

We assign a prior to θk, k = 1, …, M, that is a finite mixture of a mass point at zero denoted 

by the Dirac measure δ0 and a distribution P with positive support. This approach selects 

some regression coefficients to be 0, effectively removing those basis functions from the 

model. In the non-zero probability event that all regression coefficients are zero there is no 

association between x and y. We then let the positive distribution be a Dirichlet process 

(DP) with base measure P0 ≡ TN[0,∞](μ, ϕ2), where TN[0,∞](μ, ϕ2) implies a truncated 
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normal with support [0, ∞], mean μ, and variance ϕ2. By using a base measure with support 

over ℝ+ we ensure that the non-zero regression coefficients are positive. This imposes 

monotonicity of f. Further, the clustering property of the DP allows for all regression 

coefficients to be equal, in the same cluster, allowing for positive probability that f is 

linear. The selection and clustering of the regression coefficients does not, however, impact 

smoothness. The estimated function is guaranteed to be smooth and differentiable.

The full model is

Y i ∣ θ, σ2 N Ψ xi, M A−1θ, σ2

θj ∣ P , π πδ0 + (1 − π)P
P DP αP0
P0 ≡ TN[0, ∞] μ, ϕ2 .

(6)

The above model is equivalent to a DP with base measure that is a finite mixture

θj ∣ G G
G DP αG0
G0 ∣ π ≡ πδ0 + (1 − π)TN[0, ∞] μ, ϕ2 .

(7)

Several papers have used similar DP constructions that combine a DP with a finite mixture 

of a mass point and a non-truncated normal distribution (Herring, 2010; Canale et al., 2018; 

Cassese et al., 2019) or a gamma distribution (Liu et al., 2015).

We complete the specification by assigning the prior σ−2 ~ Gamma(a, b), a normal mean 

zero variance ϕ0
2 prior to the intercept θ0, and π ~ Beta(aπ, bπ).

2.2 Posterior computation

The model in (6) can be efficiently sampled with a Gibbs sampler. This is accomplished 

by first integrating out π from the model. The Gaussian likelihood and truncated normal 

base measure allows for P to be marginalized out of the model as well. The posterior can 

be simulated using a Polya Urn scheme (Blackwell and MacQueen, 1973; West et al., 1994; 

Bush and MacEachern, 1996).

Let Λi = Ψ(xi, M)A−1 be the transformed BP basis expansion for observation i and Λ be the 

n × (M + 1) design matrix with row i equal to Λi. Let Λi[k] denote the vector Λi with the 

kth element omitted, θ[k] the vector θ with the kth element omitted, and Λik denote only the 

kth element of Λi. Similarly, let Λ[k] be the matrix Λ with the kth column omitted and Λk be 

only the kth column of Λ. Finally, we denote by Sk the categorical indicator where Sk = c 
if θk = ηc and nc the number of coefficients in cluster c where n0 is the number in the null 

cluster with θk = 0.

The full conditional for Sk, k = 1, …, SM, is categorical. The conditional probability that the 

kth regression coefficient is equal to 0 is
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Pr Sk = 0 ∣ − = d
n0* + aπ

M − 1 + aπ + bπ
∏
i = 1

n
N yi; Λi[k]θ[k], σ2 , (8)

where n0* is the number of regression coefficients in cluster 0, the null cluster, excluding θk, 

d is a normalizing constant, and N x; μ, σ2  denotes a normal density function. In contrast to 

standard DP models, the zero cluster is allowed to be empty in this model. The conditional 

probability that θk is allocated to an existing non-zero cluster c is

Pr Sk = c ∣ − = d
M − n0* − 1 + bπ nc*

M − 1 + aπ + bπ n − n0* − 1 + α

× ∏
i = 1

n
N yi; Λi[k]θ[k] + Λikηc, σ2 .

(9)

Finally, the conditional probability that θk is allocated to a new cluster c′ is

Pr Sk = c′ ∣ − = d
M − n0* − 1 + bπ α

M − 1 + aπ + bπ M − n0* − 1 + α

× ∏
i = 1

n
N yi; ∑

l = 0, l ≠ k

M
ϕl xi, M βl, σ2 exp m2

2v − μ2

2ϕ2

× (2π)−1/2ϕ−1v1/2

∫0
∞f z; μ, ϕ2 dz∫0

∞
f(θ;  m,  v)dθ .

(10)

where v = 1/ ϕ−2 + σ−2∑i = 1
n ψk xi, M 2  and 

m = v ϕ−2μ + σ−2∑i = 1
n ψk xi, M yi − ∑l = 0, l ≠ k

M ψl xi, M βl .

In the situation where Sk is assigned to new cluster c′ a value for θk = ηc′ can be sampled 

from its univariate truncated normal full conditional. The full conditional for a single 

regression coefficient ηc′ where nc′ = 1 (no other coefficient takes that value) is truncated 

above 0 and has mean m and variance v as specified above. We use the hybrid univariate 

truncated normal sampler of Li and Ghosh (2015) to sample from this full conditional.

The M + 1-vector θ contains three types of elements: the unconstrained intercept, 

parameters that are selected to be 0, and parameters that are non-zero and are constrained 

to be greater than 0. The non-zero values take on K + 1 unique values η = {θ0, η1, …, 

ηK} where θ0 is the unconstrained intercept. Using this notation the linear predictor θ = Bη 
where B is a transformation matrix that maps η to θ according to S1, …, SM. The vector η 
has a truncated multivariate normal full conditional with mean m = σ−2v (BT ΛT y + ϕ−2μ) 

and variance v = (σ−2BT ΛT ΛB +D) where D is is a diagonal matrix with ϕ0
−2 in the first 

diagonal location for the intercept and ϕ−2 in all other diagonal locations for the constrained 

coefficients. These are the same as the typical mean and variance for a normal-normal 

model full conditional. The first element θ0 is not truncated and the remaining elements are 

truncated below at 0. We simulate from the full conditional of η as a multivariate block 

using the hybrid multivariate sampler approach of Li and Ghosh (2015).
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The Gibbs sampler is completed with standard updates of α using a mixture of gammas 

(Escobar and West, 1995) and σ−2 using the standard gamma full conditional.

2.3 Details on tuning

Care must be given when specifying the prior, particularly for the choice of values for the 

mean and standard deviation of the base measure μ and ϕ. This is challenging because 

the plausible values for the regression coefficients depends on the number of non-zero 

regression coefficients in the model and how many basis functions each coefficient is 

applied to (cluster size). We do not know either of these quantities a priori. We have taken 

the approach of scaling the outcome y to have mean zero and variance one and then setting 

μ = 0.5 and ϕ = 0.25. This puts reasonable mass on values between zero and one which 

represents plausible values for a variety of basis configurations. We have found that this 

choice performs well across a variety of simulated and real datasets. We use this setting 

in all simulation and data analysis results presented in this paper. However, results can 

be sensitive to this choice. Supplemental Section 1.2 includes an additional simulation 

study that compares sensitivity to different values of μ and ϕ. We show that as ϕ increases 

the posterior probability of no association decreases and the number of clusters (unique 

non-zero regression coefficients) increases. However, the model fit as measured by RMSE 

on f and the derivative of f is less sensitive to this choice.

The user must also specify the order of the BP (M). This should be selected, in theory, 

based on sample size and the differentiability of the function being estimated (Mclain and 

Ghosh, 2009). In practice, methods such as reversible jump MCMC or Kullback-Leibler 

distance have been used to attempt to estimate the dimension of basis expansions to be used 

in nonparametric regression (e.g. Dias and Gamerman, 2002; Dias and Garcia, 2007; Meyer 

et al., 2011) while penalization can be used to regularize a rich basis to avoid over fitting 

(Crainiceanu et al., 2005). It has additionally been noted that shape constraints, including 

monotonicity, reduce sensitivity to the dimension of the basis expansion (Meyer, 2008). We 

follow the approach of Curtis and Ghosh (2011) and use a rich basis and let the prior select 

or cluster redundant predictors. In this paper, we use M = 50 in all results shown in the 

main text but show in the supplement that a smaller value of M results in lower RMSE 

when the true function is closer to linear and a higher value of M is preferred when the 

true function is more wiggily. If the practitioner has prior knowledge of the shape of the 

underlying function, beyond monotonicity, this could be incorporated into the selection of M 
a priori.

2.4 Inference on the derivative and aerosol concentration

The proposed approach allows for coherent estimation and inference on not only the 

function f but on the derivatives of f. This includes full quantification of the uncertainty 

in the derivatives and guaranteed smoothness in the derivatives. This is particularly critical 

in our application where the first derivative of f is proportional to the time-resolved aerosol 

concentration. For a BP of order M the first derivative is a BP of order M − 1. Specifically 

the first derivative is
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f′(x) = M ∑
k = 0

M − 1
ψk(x, M − 1)θk + 1 = MΨ(x, M − 1)θ[0] . (11)

For the derivative the regression coefficient θ0 = β0, which corresponds to the intercept, 

is not included. Hence, the derivative can be identified in closed form from the posterior 

sample of θ. Inference on the derivative can be made directly by using the posterior sample 

of θ.

From a theoretical perspective the total aerosol mass accumulated on the filter should 

be the flow rate through the filter times the concentration integrated over time. Here, 

flow rate is constant and therefore ∫0
1f′(x)dx ∝ filter mass / flow rate . In our model 

∫0
1f′(x)dx = βM − β0 = ∑k = 1

M θk. We therefore scale the derivative to the total filter mass by 

replacing θ in (11) with θ = θ × filter mass / flow rate × ∑k = 1
M θk . We then estimate aerosol 

concentration as

f′(x) = M ∑
k = 0

M − 1
ψk(x, M − 1)θk + 1 = MΨ(x, M − 1)θ[0] . (12)

In practice, we scale each draw of θ from the posterior and then construct a posterior sample 

of f′.

2.5 Alternative spline approach

The proposed prior can be applied to other basis expansions and achieve some, but not all, of 

the same properties. Using the same prior structure with a transformed B-spline or I-splines 

without the transformation matrix A can still achieve monotonicity (de Boor, 1978; Ramsay, 

1988). The proposed prior will also allow estimation of no association when all regression 

coefficients are clustered at zero. However, the clustering will not result in shrinkage toward 

a linear response.

Using a spline basis with compact support may result in more flexibility than the BP 

approach presented here. This could be particularly appealing when the function being 

estimated has sharp change points. In addition, the derivative of many common splines 

including B-splines and I-splines can be represented as a spline itself and inference on 

the derivative can be made using a similar approach. However, splines lose flexibility 

and smoothness in the derivative. For example, the standard cubic spline has a quadratic 

derivative while a quadratic spline has a piecewise linear derivative. This may not be 

sufficiently flexible in many cases, as seen in the data analysis in Section 4. In contrast, 

the BP uses a higher order polynomial and therefore has a higher order derivative which 

imposes smoothness not only in the function being estimated but in all derivatives of that 

function.
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3 Simulation

We compare the proposed approach, BNMR, to alternative methods for monotone regression 

in a simulation study. We generated 500 datasets from four designs each taking the form yi = 

fs(xi) + ϵj for i = 1, …, n with ϵi ~ N(0, 0.252). We generate x ~ Unif(0, 1) and consider four 

shapes for the function fs(·):

1. Flat: f1(x) = 0.

2. Linear: f2(x) = x.

3. Wavy: f3(x) = sin(3πx)/(3π) + x.

4. Flat-nonlinear: f4(x) = 0 for x < 0.5 and f5(x) = [2(x − 0.5)]2 for 0.5 ≤ x.

The flat, linear, and wavy functions mirror those from Curtis and Ghosh (2011). We 

simulated data sets of size n = 100 and 1000.

We compared BNMR to alternative monotone regression methods that have available 

R software that includes variance estimates. The comparison methods are: constrained 

generalized additive models (CGAM, Meyer, 2013; Meyer and Liao, 2018), Bayesian 

constrained generalized additive models (BCGAM, Meyer et al., 2011; Oliva-Aviles and 

Meyer, 2018), and Bayesian isotonic regression (BISOREG, Curtis and Ghosh, 2011; Curtis, 

2018). In addition we compare with the unconstrained methods ordinary least squares 

(OLS), local polynomial regression (LOESS), and an unconstrained Bernstein polynomial 

model (UBP). For BNMR and BISOREG we set M = 50 and consider other values in the 

Supplemental Material. For UBP we select M using deviance information criterion (DIC, 

Spiegelhalter et al., 2002).

We evaluate the model performance by the root mean squared error (RMSE) on the function 

f(·) and the pointwise 95% interval coverage both evaluated at 100 evenly spaced points 

spanning the range of x. For the Bayesian methods (BNMR, BISOREG, BCGAM, and 

UBP) we consider the posterior probability that f is linear and that f is flat (no association). 

For the CGAM and OLS we report the mean p-value for testing the null hypothesis that 

there is no association.

Table 1 shows results from the simulation study. At n = 100, BNMR had the lowest RMSE 

on f among all the monotone regression methods on all four scenarios (within one standard 

error with BCGAM and BISOREG on the flat scenario). The only method to have lower 

RMSE was OLS on the linear scenario. BNMR, BISOREG, CGAM, and UBP all had 

pointwise 95% interval coverage between 0.95 and 0.98 on all scenarios. Each of the other 

methods had interval coverage of 0.9 or less on at least one scenario. At n = 1000, BNMR 

had the lowest RMSE for the flat and flat-nonlinear scenarios (within one standard error 

with BCGAM and BISOREG on the flat scenario). CGAM and BCGAM had the lowest 

RMSE of the constrained methods on the wavy scenario with BNMR and BISOREG slightly 

higher. OLS and UBP had the lowest RMSE on the linear scenario. UBP selected M = 3, a 

cubic regression function, in almost all datasets for the linear scenario.
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Both BNMR and BISREG had high, greater than 0.86, posterior probabilities of a flat 

response (no association) in the flat scenario. BCGAM does not include a flat response in 

the parameter space and therefore has a posterior, and prior, probability of 0. The average 

p-values for the test of no association for CGAM and OLS were between 0.49 and 0.53.

BNMR is the only method that allows the estimated function f to be linear with slope greater 

than 0. However, in the linear scenario this did not occur. The mean posterior probability 

of a linear function was 0.00. The response is linear when all regression coefficients are non-

zero and take the same value. Figure 2 shows the number of non-zero regression coefficient 

in the model and the number of unique values those regression coefficients take. Both 

BNMR and BISOREG include only a small number of non-zero regression coefficients, 

effectively selecting out of the model the majority of the basis functions. Because not all 

basis functions are included the estimated regression function is never truly linear. Despite 

not being exactly linear, BNMR has lower RMSE than any of the other nonparametric 

methods on the linear scenario.

A key difference between BNMR and BISOREG is that all non-zero regression coefficients 

in BISOREG take unique values while with BNMR the non-zero regression coefficients 

are clustered together and take fewer unique values. On average, there were more non-zero 

regression coefficients included into the model with BNMR but fewer, less than two, unique 

regression coefficients. This is true for both the linear and nonlinear scenarios and for 

BP expansions of order ranging from 20 to 100 (shown in supplemental material). As a 

result, the proposed approach requires estimating only a small number of unique regression 

coefficients regardless of the size of the basis expansion or the wiggliness of the regression 

function.

In our application we are interested in the derivative of the monotone function. The BP basis 

used by BISOREG, BNMR and UBP allows straight forward inference on the derivatives 

of f. The other methods do not naturally allow for this inference. We calculate a pointwise 

approximation of the derivative for the other methods by calculating change in f  divided 

by change in x for each pair of neighboring observations on an equally spaced grid. We 

do not evaluate coverage for these methods. Table 2 shows the RMSE and 95% interval 

coverage (for BISOREG, BNMR and UBP only) for the derivative of f. BNMR had lowest 

RMSE for all scenarios at the smaller sample size and the flat scenario at the larger sample 

size. BNMR, BISOREG, and UBP all suffered from poor interval coverage in several of the 

scenarios. The coverage is pointwise and in the flat-nonlinear scenario, which has an sharp 

“elbow” change-point, both methods fail to cover in the elbow, highlighting a limitation of 

the smooth BP basis.

The supplemental material includes additional simulation results, including standard errors 

for the estimates in Tables 1 and 2, interval widths, and results on sensitivity to the choice of 

prior μ and ϕ2 as well as the order of the BP M. In addition we show results for computation 

time as a function of sample size and order of the BP.
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4 Analysis of Real-Time PM2.5 Concentration Inferred from Pressure Drop

4.1 Overview of the data analysis

We use data from 12 samples collected using three MARS devices during four laboratory 

experiments. These experiments are described in detail by Tryner et al. (2019). During each 

experiment, one of four different types of aerosol—urban PM (NIST SRM 1648A Urban 

PM), ammonium sulfate ((NH4)2SO4), Arizona road dust, or match smoke—is nebulized 

into a controlled chamber containing all three MARS. Each MARS samples PM2.5 onto a 

new polytetrafluoroethylene (PTFE) filter at a flow rate of 1 L min−1 for between 7.5 and 

13 hours while pressure drop across the filter is recorded every 30 seconds. Each filter is 

weighed before and after the experiment to measure the total mass of PM2.5 accumulated. 

A TEOM measures the PM2.5 concentration in the chamber every minute as a previously-

validated point of comparison.

We use BNMR to estimate time-resolved PM2.5 concentration using the MARS pressure 

drop data from the 12 samples. Prior to analysis we removed the first 30 minutes of pressure 

drop as: 1) there was no PM2.5 in the chamber at that time and 2) the new filter was 

stretching during that time and a decreasing trend is observed due to the stretching process. 

We also removed the final five minutes when there was 1) no PM2.5 in the chamber and 

2) the sampler was shutting down resulting in spurious noise in the pressure drop function. 

Then, we fit BNMR to the time-series of measured pressure drop for each sample. From the 

fitted model we then estimate the scaled first derivative of pressure drop at each time-point 

for which the TEOM recorded PM2.5 as described in Section 2.4. For comparison, we 

perform the same procedure with BISOREG and UBP. We also estimate pressure drop and 

the scaled pointwise approximation of the derivative with LOESS, CGAM, and BCGAM. 

We omit OLS because of obvious nonlinearities in the pressure drop data.

For each method we visualize and compare the performance with respect to estimating the 

pressure drop function and inferring real-time PM2.5 from the scaled derivative of pressure 

drop. We show results from one of the 12 samples in the main text. The supplemental 

material includes estimated pressure drop and estimated real-time PM2.5 concentration for 

all 12 samples.

4.2 Estimation of the pressure drop function

Figure 3 shows the data and estimates from all six methods for a single sample. Each panel 

show estimates from a single method along with 0.95 confidence or credible intervals. The 

fits are near identical visually over most of the range. However, there are differences in the 

lower tail. BNMR and BISOREG tend to level-off between 0 and 100 minutes. In contrast 

CGAM and especially BCGAM tend to over-smooth over the same time period.

Comparing UBP to BNMR and BISOREG, which all use a BP basis, highlights an important 

difference between the constrained methods and the unconstrained method. Specifically, 

UBP experiences instability in the tails, while BNMR and BISOREG which impose 

monotonicity and further regulate with a selection prior (BISOREG) or a selection and 

clustering prior (BNMR), are more stable in the tails.
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To formally compare model fit for the pressure drop function we performed five-fold cross-

validation for each sample. Table 3 shows cross-validation results for all five methods across 

all 12 samples. LOESS had the lowest cross-validation RMSE at 0.81 followed by UBP 

at 1.21. Hence, the unconstrained methods provided a better fit then any of the monotone 

methods. The best performing monotone methods were BISOREG at 1.27 and BNMR 1.29. 

CGAM and BCGAM had higher RMSEs of 1.47 and 1.96, respectively.

LOESS outperforms the other methods in terms of cross-validation RMSE on the pressure 

drop function for two reasons. First, LOESS does not impose monotonicity and several of 

the pressure drop measurements show minor deviations from the largely monotone trend. 

The small waves result from small fluctuations in the air temperature measured by the 

device, which lead to small fluctuations in air density and thus small fluctuations in the mass 

flow rate through the filter. The second reason that LOESS has lower cross-validation RMSE 

is that three of samples show sharp change-points in the pressure drop functions (similar 

to the “elbow” in simulation scenario 4) and LOESS is the only method that did not over-

smooth these points (see supplemental Figure 9). UBP can also estimate the non-monotone 

trend but struggles with the “elbow.” However, the non-monotonicity in LOESS and UBP 

results in negative estimates of aerosol concentration, which are not physically possible.

The monotone methods smooth over the non-monotone areas of the data. This results in 

valid estimates of PM2.5 because the derivative is always non-negative. It is also consistent 

with the theoretical framework for measuring time-resolved PM2.5 from pressure drop using 

MARS as the pressure drop function should be monotone. However, this comes at a cost 

because the oscillation appears as autocorrelation in the residuals. This is not accounted for 

in the model as we assume independent and identically distributed residuals and could result 

in some bias in the intervals but results in a rational estimate of time-resolved PM2.5.

4.3 Inference on time-resolved PM2.5 with the scaled derivative

Our primary interest is estimating PM2.5 concentration using the scaled first derivative of the 

estimated pressure drop function. We scale each derivative by the total mass collected on the 

filter as described in Section 2.4. Figure 4 shows the estimates for the scaled first derivative 

with both BNMR and BISOREG. For comparison, the PM2.5 concentration measured with 

the TEOM is included. Both BNMR and BISOREG estimate the larger pattern in PM2.5 

concentration but do not fully capture localized features.

To more formally compare the estimates of PM2.5 concentration we regressed the one 

minute TEOM measurements on the estimated concentrations at those same time points 

obtained using each method (Table 3). The mean R2 across all 12 samples was 0.75 with 

BNMR and BISOREG. Hence, these two approaches provide similar estimates of real-time 

concentration.

Estimates of PM2.5 from the other methods (BCGAM, CGAM, LOESS, and UBP) are 

presented in the supplement. All of these methods are being used beyond their original 

intention and suffer from shortcomings when estimating the derivative of a function. 

BCGAM and CGAM use a quadratic spline and result in piecewise linear derivatives which 

are not suitable to estimate the time-resolved PM2.5. LOESS and UBP are non-monotone 
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and result in negative estimates of PM2.5 over some time segments. In addition, BCGAM, 

CGAM, and LOESS do not allow for the straight forward inference. When comparing to 

estimated PM2.5 from these methods to the measurements from the TEOM, LOESS was the 

best performing method with an R2 of 0.81 despite having negative estimates of PM2.5 for a 

substantial period of time. The other approaches had higher R2 ranging from 0.57 to 0.72.

4.4 Posterior visualization and MCMC performance

To better illustrate how BNMR works and compare the variable selection and clustering 

approach of BNMR to the variable selection only approach of BISOREG, we show the 

basis functions used in one sample in Figure 1. Panel 1a shows the BP basis of order 50 

as used in the simulation and data analysis. Panel 1b shows the transformed BP basis BA−1 

as described in Section 2.1. We estimated the posterior mode subset of basis functions used 

with BNMR and BISOREG. Panel 1c shows the posterior mode subset of basis functions 

included into the model with BISOREG. This is a subset of the full basis expansion shown 

in Panel 1b. Panel 1d shows the posterior mode combination of basis functions used by 

BNMR. This includes and intercept and three additional combination basis functions. Each 

combination basis function is a cluster of one to three of the original transformed basis 

function in Panel 1b. BISOREG uses an intercept and nine additional basis functions. As 

a result only three unique non-zero slope parameters are estimated with BNMR compared 

to the nine used by BISOREG. The posterior mode basis functions are shown for all 12 

samples in supplemental material. BNMR uses between three and five combination basis 

function at its posterior mode with each combination basis function being a cluster of one to 

five of the original basis functions.

Finally, we compare the MCMC performance of BNMR and BISOREG which both use 

the same BP basis but have different priors and MCMC approaches. Supplemental Table 

5 shows the mean effective sample size and autocorrelation in the posterior sample of 

f. BNMR had a larger average effective sample size than BISOREG (1164 verse 1066 

from a posterior sample of 5000 after thinning by 10 from an original sample of 50000) 

and had lower autocorrelation at lag 1 (0.273 verse 0.375). In part, this efficiency gain 

can be attributed to the clustering which results in a smaller number of unique regression 

coefficients being sampled from a truncated multivariate normal distribution. However, there 

are numerous other differences in the priors and algorithms that likely also contribute to 

differences in efficiency.

5 Discussion

We propose BNMR to estimate a smooth monotone regression function. Our method is 

motivated by data generated from the MARS aerosol monitor. This affordable monitor 

measures the pressure drop across a filter. As particles accumulate on the filter the pressure 

drop increases. The time-resolved PM2.5 concentration is inferred from the first derivative 

of pressure drop scaled by the total mass collected on the filter. Hence, our objective is to 

estimate a smooth monotone function and make inference on the scaled derivative of that 

function.
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Our proposed approach uses a BP expansion with a Dirichlet process prior that performs 

both variable selection and clustering on the regression coefficients for the basis expansion. 

This formulation enables flexible monotone regression while allowing the model to be null 

when there is no association between predictor and outcome and allowing the function to be 

linear when there is no evidence of nonlinearity. Further, we can make coherent, closed-form 

inference on not only the function being estimated but the derivatives of that function and 

the scaled derivative of the function.

Our simulation study showed that BNMR performs similarly to other approaches for smooth 

nonlinear functions but offers improved inference at smaller sample sizes and when the true 

function is linear. By both clustering and selecting basis functions, BNMR is self-tuning and 

results in a smaller parameter space than methods that use variable selection alone.

Our proposed method builds on a substantial body of research on statistical methods to 

measure or estimate exposure to PM2.5, PM components, other environmental pollutants. 

This includes methods to infer exposures from existing monitoring networks, deployment of 

networks of portable devices, smartphones, and personal monitors (Calder, 2008; Rundel et 

al., 2015; Das and Ghosal, 2017; Huang et al., 2018; Finazzi and Paci, 2019).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Various representations of the Bernstein polynomial (BP) basis functions. Panel 1a shows 

the 51 BP basis functions of order M = 50 (Ψ(x, M)). Panel 1b shows the transformed 

BP basis represented as Ψ(x, M)A−1 as described in 2.1. This transformation is used for 

both BNMR and BISOREG. Panel 1c shows the posterior mode group of basis functions 

selected to be included into the model with BISOREG. This is a subset of the transformed 

basis functions shown in Panel 1a. Panel 1d shows the posterior model combination of basis 

functions included with BNMR. This includes the intercept and three basis functions which 

are each a linear combination of one to three of the basis functions shown in panel 1b and 

subsequently linear combinations of the basis functions shown in Panel 1a. Results from all 

12 runs are shown in the supplemental material.
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Figure 2: 
Simulation results for the number of non-zero regression coefficients (dashed line) and the 

number of unique values of the non-zero regression coefficient (solid line) for BISOREG 

(triangle) and BNMR (×). The number of unique non-zero values is always equal to the total 

number of non-zero values in BISOREG.
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Figure 3: 
Estimated pressure drop from the MARS data for one run. Each panel shows the estimates 

and 95% intervals for each method separately. Results from all 12 runs are shown in the 

supplemental material.
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Figure 4: 
Estimated PM2.5 concentration from the MARS data. Panel 4a shows the posterior mean 

and 95% interval from BNMR and Panel 4b shows the posterior mean and 95% interval 

from BISOREG. The dashed line in each panel is the PM2.5 concentration measured with the 

TEOM. Results from all 12 runs are shown in the supplemental material. Results with other 

methods are also shown in the supplemental material.
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Table 1:

Simulation results comparing estimation of f with each method. The table shows RMSE and 95% interval 

coverage both evaluated pointwise on a grid of 100 evenly spaced points. The columns labeled Pr( flat ) are 

the posterior probability of a flat response or for OLS and CGAM the mean p-value for rejecting the null 

of association. Additional simulation results including standard errors for the RMSE and interval widths are 

included in the supplemental material.

n = 100 n = 1000

Model RMSE Coverage Pr( flat ) RMSE Coverage Pr( flat )

Scenario 1: Flat

BCGAM 2.22 0.95 0.00 0.65 0.96 0.00

BISOREG 2.19 0.97 0.86 0.61 0.97 0.95

BNMR 2.08 0.96 0.94 0.60 0.96 0.99

CGAM 3.57 0.98 0.49 1.17 0.99 0.50

LOESS 5.15 0.93 NA 1.61 0.95 NA

OLS 3.11 0.95 0.50 0.93 0.96 0.53

UBP 5.23 0.93 0.00 1.60 0.95 0.00

Scenario 2: Linear

BCGAM 6.42 0.84 0.00 2.58 0.84 0.00

BISOREG 5.99 0.96 0.00 2.42 0.95 0.00

BNMR 4.72 0.98 0.00 2.14 0.96 0.00

CGAM 5.79 0.96 0.00 2.30 0.95 0.00

LOESS 5.15 0.93 NA 1.61 0.95 NA

OLS 3.11 0.95 0.00 0.93 0.96 0.00

UBP 5.28 0.93 0.00 1.60 0.95 0.00

Scenario 3: Wavy

BCGAM 6.57 0.84 0.00 2.17 0.88 0.00

BISOREG 5.98 0.95 0.00 2.25 0.95 0.00

BNMR 5.30 0.96 0.00 2.25 0.94 0.00

CGAM 5.67 0.96 0.00 2.15 0.96 0.00

LOESS 6.44 0.89 NA 2.14 0.93 NA

OLS 8.02 0.56 0.00 7.22 0.19 0.00

UBP 6.38 0.90 0.00 2.30 0.90 0.00

Scenario 4: Flat-nonlinear

BCGAM 5.33 0.90 0.00 1.93 0.89 0.00

BISOREG 5.60 0.95 0.00 2.12 0.96 0.00

BNMR 4.95 0.96 0.00 1.82 0.96 0.00

CGAM 5.29 0.96 0.00 1.91 0.97 0.00

LOESS 5.70 0.91 NA 1.88 0.93 NA

OLS 16.11 0.32 0.00 16.24 0.09 0.00

UBP 5.42 0.93 0.00 1.91 0.91 0.00
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Table 2:

Simulation results comparing estimation of the derivative f′with each method. The table shows RMSE and 

95% interval coverage both evaluated pointwise on a grid of 100 evenly spaced points. Intervals for the 

derivative with BCGAM, CGAM and LOESS are not available. Additional simulation results including 

standard errors for the RMSE and interval widths are included in the supplemental material.

n = 100 n = 1000

Model RMSE Coverage RMSE Coverage

Scenario 1: Flat

BCGAM 3.24 NA 0.85 NA

BISOREG 4.90 0.00 0.61 0.00

BNMR 1.12 1.00 0.19 1.00

CGAM 22.80 NA 9.92 NA

LOESS 53.81 NA 18.49 NA

UBP 55.26 0.92 16.61 0.93

Scenario 2: Linear

BCGAM 61.68 NA 39.98 NA

BISOREG 65.54 0.96 44.91 0.94

BNMR 39.57 1.00 38.21 0.95

CGAM 68.85 NA 40.79 NA

LOESS 53.81 NA 18.49 NA

UBP 56.90 0.91 16.60 0.93

Scenario 3: Wavy

BCGAM 64.03 NA 32.05 NA

BISOREG 70.78 0.95 46.53 0.91

BNMR 55.00 0.97 45.13 0.85

CGAM 69.21 NA 37.04 NA

LOESS 87.54 NA 35.18 NA

UBP 97.38 0.78 52.52 0.68

Scenario 4: Flat-nonlinear

BCGAM 62.08 NA 28.82 NA

BISOREG 92.18 0.46 65.44 0.45

BNMR 61.45 0.68 46.91 0.61

CGAM 66.95 NA 34.57 NA

LOESS 65.11 NA 28.99 NA

UBP 62.59 0.88 28.39 0.66
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Table 3:

Summary of the model fit for each method in the data analysis. The table shows the cross-validation RMSE 

from the five-fold cross validation. For BNMR and BISOREG the table additionally shows the comparison 

of the scaled derivative to the time-resolved measurement of PM2.5 from a TEOM. The results show the R2, 

intercept, and slope from the regression of the TEOM PM2.5 on the MARS estimated PM2.5 obtained from the 

estimated first derivative of pressure drop.

Cross-Validation Regression

Model RMSE R 2 Intercept Slope

BCGAM 1.96 0.57 37.27 0.97

BISOREG 1.27 0.75 46.89 0.91

BNMR 1.29 0.75 44.59 0.92

CGAM 1.47 0.72 −2.03 1.09

LOESS 0.81 0.81 51.60 0.88

UBP 1.21 0.63 84.77 0.69
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